Alzheimer’s
disease, the most common form of dementia, is
characterized by the aggregation of amyloid beta protein (Aβ).
The aggregation and toxicity of Aβ are strongly modulated by
metal ions and phospholipidic membranes. In particular, Cu2+ ions play a pivotal role in modulating Aβ aggregation. Although
in the last decades several natural or synthetic compounds were evaluated
as candidate drugs, to date, no treatments are available for the pathology.
Multifunctional compounds able to both inhibit fibrillogenesis, and
in particular the formation of oligomeric species, and prevent the
formation of the Aβ:Cu2+ complex are of particular
interest. Here we tested the anti-aggregating properties of a heptapeptide,
Semax, an ACTH-like peptide, which is known to form a stable complex
with Cu2+ ions and has been proven to have neuroprotective
and nootropic effects. We demonstrated through a combination of spectrofluorometric,
calorimetric, and MTT assays that Semax not only is able to prevent
the formation of Aβ:Cu2+ complexes but also has anti-aggregating
and protective properties especially in the presence of Cu2+. The results suggest that Semax inhibits fiber formation by interfering
with the fibrillogenesis of Aβ:Cu2+ complexes.