Kathmandu, the capital of Nepal, faces increasing environmental problems such as heavy air pollution and lack of proper waste management. The aim of this study was to examine if the soils are also affected by pollution, with the focus on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The sum of 20 PAHs in surface soils ranged between 184 and 10279 lg kg 脌1 . The most abundant PAHs were perylene (14.6%), benzo(b+j+k)flouranthene (10.7%), naphthalene (10.7%) and phenanthrene (9.8%), with perylene concentrations varying strongly. The significantly more positive d 13 C values of perylene in samples with elevated concentrations indicate biological production, possibly by anaerobic degradation of perylene quinones. PAH ratios also indicate the influence of petrogenic PAH sources, especially at petrol stations and some street samples. The sum of 12 PCBs ranged from 356 to 44710 ng kg 脌1 . The most abundant were congeners 52 (19.4%), 101 (14.3%), 118 (13.4%) and 138 (11.7%). The low PCB concentrations and pattern were interpreted as a diffuse background contamination being the main PCB source in the urban soils. Indications for recent contamination were found in river sediments from the inner city, as well as in industrial and street samples. Classified by land use, the samples taken from the gutter contained the highest PAH and PCB concentrations as a result of accumulation. The lowest values were found in surface soils from Swayambunath (a park) and a garden area. A gradual decrease in concentration with depth was present for both compound classes in the profiles sampled at Swayambunath. No trend was visible in the garden profiles as a result of soil disturbance of the soil by agricultural treatment. Enhanced microbial degradation and volatilization in the warm/humid monsoon climate is probably the main cause for low pollutant concentrations. Increased photodegradation and the short accumulation period might be other important factors. Concerning its state of soil pollution, Kathmandu fits rather well into a global distribution pattern of persistent organic pollutants, with high concentrations in temperate (higher latitude) regions and very low ones in the tropics (lower latitude regions) due to global distillation.