This report discusses the history and mechanisms of vaccination of humans as well as the engineering of therapeutic antibodies. Deeper understanding of the molecular interactions involved in both acquired and innate immunity is allowing sophistication in design of modified and even synthetic vaccines. Recombinant DNA technologies are facilitating development of DNA-based vaccines, for example, with the recognition that unmethylated CpG sequences in plasmid DNA will target Toll-like receptors on antigen-presenting cells. Formulations of DNA vaccines with increased immunogenicity include engineering into plasmids with "genetic adjuvant" capability, incorporation into polymeric or magnetic nanoparticles, and formulation with cationic polymers and other polymeric and non-polymeric coatings. Newer methods of delivery, such as particle bombardment, DNA tattooing, electroporation, and magnetic delivery, are also improving the effectiveness of DNA vaccines. RNA-based vaccines and reverse vaccinology based on gene sequencing and bioinformatic approaches are also considered. Structural vaccinology is an approach in which the detailed molecular structure of viral epitopes is used to design synthetic antigenic peptides. Virus-like particles are being designed for vaccine deliveries that are based on structures of viral capsid proteins and other synthetic lipopeptide building blocks. A new generation of adjuvants is being developed to further enhance immunogenicity, based on squalene and other oil-water emulsions, saponins, muramyl dipeptide, immunostimulatory oligonucleotides, Toll-like receptor ligands, and lymphotoxins. Finally, current trends in engineering of therapeutic antibodies including improvements of antigen-binding properties, pharmacokinetic and pharmaceutical properties, and reduction of immunogenicity are discussed. Taken together, understanding the chemistry of vaccine design, delivery and immunostimulation, and knowledge of the techniques of antibody design are allowing targeted development for the treatment of chronic disorders characterized by continuing activation of the immune system, such as autoimmune disorders, cancer, or allergies that have long been refractory to conventional approaches.