The purpose of this study was to define specific types of resetting responses to programmed electrical stimulation during human ventricular tachycardia and to use computer simulations of reentry circuits to assess the possible mechanisms and pacing site location relative to the reentry circuit for each type of response. The effects of scanning single stimuli at 35 left ventricular endocardial sites during sustained monomorphic ventricular tachycardia in 12 patients were studied. In considering alterations in QRS configuration and the delay between the stimulus and the advanced QRS, we identified three types of resetting responses to scanning stimuli consistent with stimulation at sites in or near the reentry circuit at 12 abnormal endocardial sites in eight patients. Type 1: all capturing stimuli were followed after a delay by early QRS complexes that had the same configuration as the tachycardia complexes. Type 2: late stimuli reset tachycardia as in type 1 but early stimuli reset the tachycardia after altering the QRS configuration. Type 3: late stimuli reset tachycardia as in type 1, but early stimuli advanced tachycardia with a short stimulus to QRS delay without altering the QRS configuration. In the simulations, premature depolarization of sites in the circuit produced orthodromic and antidromic wavefronts. The orthodromic wavefront propagated through the circuit and exited the circuit at the same site as did the previous tachycardia wavefronts and advanced the tachycardia without altering the configuration of the advanced QRS. The antidromic wavefront of relatively late stimuli was confined within or near the circuit by collision with the orthodromic wavefront of the preceding tachycardia beat and failed to alter ventricular activation distant from the circuit. Therefore, the QRS configuration after the stimulus was unchanged. A type 1 response occurred when all capturing stimuli produced this effect. However, with increasing stimulus prematurity, the antidromic wavefront propagated farther before colliding with an orthodromic wavefront, and under some conditions, it exited the circuit from a site other than the original circuit "exit," and altered the ventricular activation sequence distant from the circuit and, therefore, the QRS configuration, producing a type 2 pattern. The type 3 pattern occurred when the antidromic wavefront of early premature beats captured the original circuit exit. The effect of a stimulus was dependent on the stimulus prematurity, the relative conduction times from the stimulation site to the potential sites of "exit" from the circuit, and the timing of the excitable gap at the stimulation site. In the figure-eight reentry circuit simulations, the type 1 response tended to occur during stimulation within, the type 2 response near the entrance to, and the type 3 response outside but near the exit from the slowly conducting central common pathway. Type 2 responses could also occur with stimulation at a site that was close to but not within the circuit. The recognition of specific ...