As an n-type organic semiconductor compound, perfluoropentacene has more widespread applications in organic electronics because of its higher electron mobility compared with its parent pentacene. Herein, we explore intriguing dynamic electronic properties of perfluoropentacene caused by structural vibrations using density functional theory calculations. Perfluoropentacene could exhibit diradical character because of the persistent vibrations, although it belongs to a closed-shell singlet molecule in its equilibrium configuration. Not all the vibration-induced structural changes can induce diradical character, but only those leading to a small singlet-triplet energy gap, especially the small HOMO-LUMO gap, as well as the short cross-linking C-C bonds and distorted carbon ring structures in polyacetylene chains make great contributions. Due to molecular vibrations, the diradical character of dynamic perfluoropentacene exhibits pulsing behavior. Compared with pentacene, its perfluorination can not only considerably stabilize two frontier molecular orbitals, but also reduce the HOMO-LUMO gap, thus leading to an increase of the number of vibrational modes which can make the diradical character appear. In particular, perfluorination makes 19 diradical vibrational modes appear in the low frequency region. These observations indicate that some low energy pulses can trigger perfluoropentacene molecular vibrations according to some low energy modes and thus the appearance of pulsing diradical character or molecular magnetism. Clearly, the observed novel characters of a molecule possessing hidden pulsing diradical character and tunable magnetism in this work would contribute to opening up promising areas for designing peculiar magnetic materials.