We performed in vitro assay and field trials to assess levels of changes in intrinsic properties and resistance against soft rot of the potato cv. Dejima upon the introduction of a soybean calmodulin 4 gene (SCaM4). Field trials with four lines overexpressing SCaM4 gene were conducted over two seasons, and harvested tubers were evaluated in bioassay for resistance to Pectobacterium carotovorum ssp. carotovorum. The SCaM4 transgenic potato lines inoculated with 10 8 CFU/ml of P. carotovorum ssp. carotovorum showed enhanced resistance compared to control. Among the SCaM4 transgenic lines, the transgenic line SCaM4-4 exhibited the highest tolerance to soft rot in vitro assays, so did in field trials. In the field trial, the soft rot resistance of SCaM4-4 line was more than 5 times higher compared to that of control cultivar, Dejima. The major agronomic characteristics of the SCaM4 transgenic lines were not different from those of the nontransgenic 'Dejima'. The result demonstrated that the transformation of a calmodulin 4 gene was a successful strategy in development of potato cultivar enhanced to soft rot.