2023
DOI: 10.1016/j.arbres.2023.01.007
|View full text |Cite
|
Sign up to set email alerts
|

Identification of Asthma Phenotypes in the Spanish MEGA Cohort Study Using Cluster Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 44 publications
0
3
0
1
Order By: Relevance
“…Otro aspecto relevante del asma es la heterogeneidad de la enfermedad, tanto en la presentación clínica, como en las comorbilidades asociadas o los mecanismos fisiopatológicos subyacentes, lo cual condiciona distintas respuestas al tratamiento en pacientes que pueden parecer inicialmente similares 67 , 68 , 69 . Para optimizar este aspecto, en lo que hemos denominado fase de caracterización del asma, se hará un estudio hospitalario, incluyendo únicamente los pacientes con diagnóstico de asma confirmado, para identificar los fenotipos de la enfermedad que presentan estos pacientes.…”
Section: Discussionunclassified
“…Otro aspecto relevante del asma es la heterogeneidad de la enfermedad, tanto en la presentación clínica, como en las comorbilidades asociadas o los mecanismos fisiopatológicos subyacentes, lo cual condiciona distintas respuestas al tratamiento en pacientes que pueden parecer inicialmente similares 67 , 68 , 69 . Para optimizar este aspecto, en lo que hemos denominado fase de caracterización del asma, se hará un estudio hospitalario, incluyendo únicamente los pacientes con diagnóstico de asma confirmado, para identificar los fenotipos de la enfermedad que presentan estos pacientes.…”
Section: Discussionunclassified
“…With a high accuracy of 87%-95% [36], machine learning models using EHR data have been used to profile patients in various areas, for example, to develop a phenotype for patients with Turner syndrome [61], identify low medication adherence profiles [62], find variable COVID-19 treatment response profiles [63], and predict hypertension treatment response [64]. Yet, while machine learning has helped find various asthma profiles [65][66][67][68][69][70][71][72], no prior study has predicted ICS response. Also, prior studies are mostly from single centers with small sample sizes and have not moved the needle of precision treatment for asthma [58,60].…”
Section: Introductionmentioning
confidence: 99%
“…The clustering analysis method in unsupervised learning is being increasingly applied to various fields [ 19 , [20] , [21] , [22] , [23] , [24] , [25] ], which helps us make full use of a large number of unmarked samples and saves a lot of manual work and time. There are also many applications that combine clustering analysis with machine learning algorithms.…”
Section: Introductionmentioning
confidence: 99%