The model white-rot basidiomycete Phanerochaete chrysosporium contains a single integral membrane ⌬ 12 -desaturase FAD2 related to the endoplasmic reticular plant FAD2 enzymes. The fungal fad2-like gene was cloned and distinguished itself from plant homologs by the presence of four introns and a significantly larger coding region. The coding sequence exhibits ca. 35% sequence identity to plant homologs, with the highest sequence conservation found in the putative catalytic and major structural domains. In vivo activity of the heterologously expressed enzyme favors C 18 substrates with ؉3 regioselectivity, where the site of desaturation is three carbons carboxy-distal to the reference position of a preexisting double bond (). Linoleate accumulated to levels in excess of 12% of the total fatty acids upon heterologous expression of P. chrysosporium FAD2 in Saccharomyces cerevisiae. In contrast to the behavior of the plant FAD2 enzymes, this oleate desaturase does not 12-hydroxylate lipids and is the first example whose activity increases at higher temperatures (30°C versus 15°C). Thus, while maintaining the hallmark activity of the fatty acyl ⌬ 12 -desaturase family, the basidiomycete fad2 genes appear to have evolved substantially from an ancestral desaturase.Desaturases, the enzymes responsible for unsaturated fatty acid biosynthesis, are found throughout the eukaryotic taxa. Critical cellular processes dependent on the modification of acyl lipids by desaturases include the regulation of membrane structure and fluidity, proper function of ion channels and other membrane proteins, and the biosynthesis of signaling molecules, such as jasmonic acid and arachidonic acid-derived second messengers (53, 71). Polyunsaturated fatty acids (PUFAs) with double bonds at carbon-12, such as linoleic acid (18:2⌬9c,12c), are not synthesized by animals, who therefore depend upon the activities of the stepwise action of the ⌬ 9 -and ⌬ 12 -desaturases from plants and lower eukaryotes to generate these essential lipids.Supplementation of our diet with PUFAs derived from transgenic organisms has been targeted in recent years. Expression of fungal (37) and plant (56) desaturase genes in mammalian cells has been explored as a means to enhance the nutritional quality of meat products. Oleate and PUFA desaturases and elongases are gene targets sought after for transgenic production of the C 20 and C 22 polyunsaturated food supplements docosahexenoic and eicosapentenoic acids in alga, plants, and yeast (35, 51). The practical success of lipid metabolic engineering studies is dependent upon the expression of enzymes with high chemo-and regioselectivity within the transgenic organism, coupled with the manipulation of lipid biochemical flux to result in high, economically viable levels of unsaturated storage oil accumulation.Two evolutionarily distinct desaturase types exist: the soluble plastidal and the membrane-bound endoplasmic reticulum (ER)-localized enzymes, both of which use NAD(P)H and O 2 to sequentially abstract two hydrogens from ...