Background: The negative effect of long-term working load on lumbar is widely known. However, insertion of different resting modes on long-term working load, and its effects on the lumbar spine is rarely studied. The purpose of this study was to investigate the biomechanical responses of lumbar spine with different levels of degenerated intervertebral discs under different working-resting modes. Methods: Four poroelastic finite element models of lumbar spinal segments L2-L3 with different grades of disc degeneration were developed. Four different loading conditions represented four different resting frequencies, namely, no rest, one-time long rest, three-time moderate rests, and five-time short rests, on the condition that the total resting time was the same except in the no rest mode. Loading amplitudes of diurnal activities included 100 N, 300 N, and 500 N. Results: With increasing resting frequency, the axial effective stress and fluid loss decreased, whereas the pore pressure and radial displacement increased. Under different resting frequencies, the changing rate of each biomechanical parameter was different. Conclusions: Under a situation of fixed total resting time, high resting frequency was advisable. If sufficient resting frequency was unavailable for healthy people as well as patients with mildly and moderately degenerated intervertebral discs, they could similarly benefit from relatively less resting frequencies. However, one-time rest will not be useful in cases where intervertebral discs were seriously degenerated. Reasonable working-resting modes for different degrees of disc degeneration, which could assist patients achieve a better restoration, were provided in this study.