Lung adenocarcinoma is one of the most fatal types of cancer worldwide, with non-small cell lung cancer being the most common subtype. Therefore, there is need for improved treatment approaches. Tumor growth results from the proliferation of a very small number of tumor stem cells, giving rise to the theory of cancer stem cells (CSCs). Lung CSCs are associated with lung cancer development, and although chemotherapy drugs can inhibit the proliferation of lung cancer cells, they have difficulty acting on lung CSCs. Even if the tumor appears to have disappeared after chemotherapy, the presence of a small number of residual tumor stem cells can lead to cancer recurrence and metastasis. Hence, targeting and eliminating lung CSCs is of significant therapeutic importance. In this study, we cultured A549 cells in sphere-forming conditions using B27, EGF, and bFGF, isolated peripheral blood mononuclear cells (PBMCs), and induced and characterized dendritic cells (DCs). We also isolated and expanded T lymphocytes. DC vaccines were prepared using A549 stem cell lysate or A549 cell lysate for sensitization and compared with non-sensitized DC vaccines. The content of IFN-γ in the supernatant of cultures with vaccines and T cells was measured by ELISA. The cytotoxic effects of the vaccines on A549 cells and stem cells were assessed using the Cytotox96 assay, and the impact of the vaccines on A549 cell migration and apoptosis was evaluated using Transwell assays and flow cytometry. DC vaccines sensitized with human lung CSC lysates induced significant
in vitro
cytotoxic effects on A549 lung cancer cells and CSCs by T lymphocytes, while not producing immune cytotoxic effects on human airway epithelial cells. Moreover, the immune-killing effect induced by DC vaccines sensitized with lung CSC lysates was superior to that of DC vaccines sensitized with lung cancer cells.