We describe the use of a method called differential expression using customized amplification library (DECAL) to study the global changes in gene expression in iron-deficient versus iron-reconstituting cells of Synechocystis sp. strain PCC 6803. We identified a number of genes, such as isiA, idiA, psbA, cpcG, and slr0374, whose expression either increased or decreased in response to iron availability. Further analysis led to the identification of additional genes related to those identified by DECAL (e.g., psbC, psbO, psaA, apcABC, cpcBAC1C2D, and nblA) that were differentially regulated by iron availability. Expression of cpcG, psbC, psbO, psaA, apcABC, and cpcBAC1C2D increased, whereas that of isiA, idiA, nblA, psbA, and slr0374 decreased, in iron-reconstituting cells. S1 nuclease protection studies showed that increased transcript levels of psbA in iron-deficient cells was due to the increased expression of both psbA2 and psbA3 genes, although the steadystate level of psbA2 remained higher than that of psbA3.