IgA nephropathy (IgAN) is a common autoimmune disease that is characterized by formation and deposition of IgA1-containing immune complexes frequently leading to end-stage kidney disease. The IgA1 in these immune complexes carries aberrantly glycosylated O-glycans. In circulating IgA1 these galactose-deficient mucin-type O-glycans are bound by autoantibodies and thus, contribute to immune complex formation and pathogenesis. Even though the disease is associated with the overproduction of aberrant O-glycans on IgA1, specific structure-function-studies of mucin-type O-glycans are limited. Compared to other expression hosts, plants offer the opportunity for de novo synthesis of O-glycans on recombinant glycoproteins as they are lacking the mammalian O-glycosylation pathway. Recently, we demonstrated that Nicotiana benthamiana are suitable for the generation of distinct O-glycans on recombinant IgA1. Here, we expand our engineering repertoire by in planta generation of galactose-deficient and α2,6-sialylated O-glycans which are the prevailing glycans detected on IgA1 from patients with IgAN.