Active ingredients of medicinal plants have unique pharmacological and clinical effects. However, conventional extraction technology has many disadvantages, such as long-time and low-efficiency. XynA-assisted extraction may overcome such problems, since the plant cell wall is mainly composed of cellulose. Based on the three-dimensional protein structure, we found the C-terminal domain and N-terminal domain twisted together and resulted in more flexibility. We carried out a series of truncations, with XynA_ΔN36 getting more yields of active ingredients. As shown by HPLC analysis, the efficiencies for extraction of salvianic acid A and berberine from Salvia miltiorrhiza and Phellodendron chinense were increased by approximately 38.14% and 35.20%, respectively, compared with the conventional extraction protocol. The yields of the two compounds reached 2.84 ± 0.05 mg g−1 and 3.52 ± 0.14 mg g−1, respectively. Above all, XynA_ΔN36 can be applied to the extraction of salvianic acid A and berberine, and this study provides a novel enzyme for the extraction technology, which aids rational utilization and quality control of medicinal plants.