The rockburst simulation test is conducted by utilizing a mineral-containing marble specimen. The loading condition is set to the three directions, each loading on five surfaces except for a single free surface. The whole test procedure is monitored in real time by using a PCI-II acoustic emission monitoring system and a high-speed camera. According to the test outcomes, rockburst is a process in which energy is rapidly released from the free surface. Rock block and rock plate are buckled and ejected from the free surface and a severe rockburst process is accompanied by spray rock powder. An explosion sound can be heard during the process, which can be analyzed by signal processing techniques. The failure mode of the specimen is a splitting-shearing composite failure, and the free surface becomes a rockburst destruction surface. A V-type rockburst pit is formed in the ejection area. The effective acoustic emission signal of the whole test process is decomposed and reconstructed using five-layer wavelets to produce six frequency band sub-signals. In addition, the wavelet energy and its energy distribution coefficients are assessed for various frequency bands, and the proportion of each dominant frequency band within each period is computed. Finally, it was found that the dominant frequency band is 125~250 kHz, while the suboptimal frequency band is 250~500 kHz. The succeeding features are noticed to be used as predicted features for the rockburst disaster. Namely, acoustic emission signals arise in large numbers and the energy distribution coefficient of the dominant frequency band concentrates above 0.4. The proportion of dominant frequency band appears in continuous valley type and keeps below 80%, while the proportion of suboptimal frequency band appears in continuous peak type and keeps above 20%.