RNAi loss-of-function screens, which have proven effective to identify genes functionally responsible for cellular phenotypes, can be designed to use different genetic backgrounds or altered environmental conditions to elucidate genetic dependencies. These sorts of screening approaches can be exploited to identify genetic targets that minimize resistance to approved drugs, and provide a basis on which to develop new targeted therapies and predict the secondary targets for combinatorial treatments. Four types of pooled short hairpin RNA (shRNA) screens, in particular, have been used to look for genetic targets that work together with known drugs or other anticancer targets, either in an additive or synergistic fashion. Each method produces results that provide a useful but limited picture of the genetic elements driving oncogenesis.