f Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us.
Sulfonamides are widely used as antibiotics, antidiabetics, diuretics, antivirals, and anticancer agents (1-4), and thus, large amounts of these compounds enter the environment every year (5, 6). Contamination with sulfonamides poses environmental concern due to the potential development and dissemination of antibiotic resistances (7). Despite their ubiquity, their microbial metabolism and ultimate fate in the environment thereof are poorly understood.Several studies showed that sulfamethoxazole (SMX) (Fig. 1a), an important representative of sulfonamide compounds, undergoes partial degradation in wastewater treatment plants under aerobic and anaerobic conditions (8-11). We recently demonstrated that Microbacterium sp. strain BR1, a Gram-positive bacterium isolated from a membrane bioreactor treating effluent contaminated by several pharmaceuticals, was capable of mineralizing the 14 C-labeled aniline moiety of SMX when the latter was supplied as the sole carbon source (12). This was the first unambiguous indication that sulfonamides are subject to growth-linked metabolism in microorganisms.To our knowledge, Hartig (13) was the first to identify the aminated heteroaromatic side moieties of the sulfonamides SMX and sulfadimethoxine as stable metabolites after biodegradation with activated sludge. This result was recently confirmed by two groups that were able to isolate Microbacterium strains with the ability to degrade the sulfonamides sulfamethazine (SMZ) (14) and sulfadiazine (SDZ) (15). Additionally, both groups identified the aminated heteroaromatic side moieties of the sulfonamide as a stable metabolite after the degradation of the parent compound. Although these stable metabolites were identified, the i...