Purpose. Cervical cancer (CC) is one of the most common gynecologic neoplasms. Hypoxia is an essential trigger for activating immunosuppressive activity and initiating malignant tumors. However, the determination of the role of immunity and hypoxia on the clinical outcome of CC patients remains unclear. Methods. The CC independent cohort were collected from TCGA database. Consensus cluster analysis was employed to determine a molecular subtype based on immune and hypoxia gene sets. Cox relevant analyses were utilized to set up a risk classifier for prognosis assessment. The underlying pathways of classifier genes were detected by GSEA. Moreover, we conducted CIBERSORT algorithm to mirror the immune status of CC samples. Results. We observed two cluster related to immune and hypoxia status and found the significant difference in outcome of patients between the two clusters. A total of 251 candidate genes were extracted from the two clusters and enrolled into Cox relevant analyses. Then, seven hub genes (CCL20, CXCL2, ITGA5, PLOD2, PTGS2, TGFBI, and VEGFA) were selected to create an immune and hypoxia-based risk classifier (IHBRC). The IHBRC can precisely distinguish patient risk and estimate clinical outcomes. In addition, IHBRC was closely bound up with tumor associated pathways such as hypoxia, P53 signaling and TGF β signaling. IHBRC was also tightly associated with numerous types of immunocytes. Conclusion. This academic research revealed that IHBRC can be served as predictor for prognosis assessment and cancer treatment estimation in CC.