The indirect antibody peroxidase-antiperoxidase technique was used to determine the laminar and lobular distribution of catecholaminergic afferents in the adult mouse, opossum, and cat cerebellum. A monoclonal antibody to tyrosine hydroxylase (TH) revealed a plexus of thin varicose fibers that exhibited a different density and distribution pattern for each species. In the cat, TH-immunoreactive fibers were sparsely distributed to all laminae, lobules, and nuclei of the cat cerebellum except for an area of elevated density in the ventral folia of lobules V and VI. In the opossum, TH-positive fibers were uniformly and densely distributed in the granule and Purkinje cell layers; they were more abundant in vermal lobules V-VI than in more anterior and posterior lobules, particularly I and X. Numerous TH-immunoreactive fibers were found in all four cerebellar nuclei of the opossum. In the mouse, TH-positive fibers formed a dense plexus within all cerebellar lobules, laminae, and nuclei. The mouse also exhibited numerous TH-immunoreactive Purkinje cells that were localized predominantly within vermal lobules VI-X, the paraflocculus, and flocculus. In addition to the interspecies differences in the distribution of catecholaminergic fibers within the cerebellum, comparison of this plexus to that previously described for serotonin in these species reveals that the relative densities and distribution patterns of catecholaminergic and serotoninergic fibers also vary between species. It is thus hypothesized that in each species a given monoamine has a unique net effect on cerebellar output that is determined by its effects on different neuronal populations within the cerebellum.