Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Transmembrane protein 184b (Tmem184b) has been implicated in axon degeneration and neuromuscular junction dysfunction. Notably, Tmem184b exhibits high expression levels in the retina; however, its specific function within this tissue remains poorly understood. To elucidate the role of Tmem184b in the mammalian visual system, we developed a Tmem184b knockout (KO) model for further investigation. Loss of Tmem184b led to significant decreases in both a and b wave amplitudes of scotopic electroretinogram (ERG) and reduced b wave amplitudes of photopic ERG, respectively, reflecting damage to both the photoreceptors and secondary neuronal cells of the retina. Histologic analyses showed a progressive retinal thinning accompanied by the significantly loss of retinal cells including cone, rod, bipolar, horizontal and retinal ganglion cells. The expression levels of photo‐transduction‐related proteins were down‐regulated in KO retina. TUNEL (terminal deoxynucleotidyl transferase‐mediated biotinylated Uridine‐5'‐triphosphate [UTP] nick end labelling) and glial fibrillary acidic protein (GFAP)‐labelling results suggested the increased cell death and inflammation in the KO mice. RNA‐sequencing analysis and GO enrichment analysis revealed that Tmem184b deletion resulted in down‐regulated genes involved in various biological processes such as visual perception, response to hypoxia, regulation of transmembrane transporter activity. Taken together, our study revealed essential roles of Tmem184b in the mammalian retina and confirmed the underlying mechanisms including cell death, inflammation and hypoxia pathway in the absence of Tmem184b, providing a potential target for therapeutic and diagnostic development.
Transmembrane protein 184b (Tmem184b) has been implicated in axon degeneration and neuromuscular junction dysfunction. Notably, Tmem184b exhibits high expression levels in the retina; however, its specific function within this tissue remains poorly understood. To elucidate the role of Tmem184b in the mammalian visual system, we developed a Tmem184b knockout (KO) model for further investigation. Loss of Tmem184b led to significant decreases in both a and b wave amplitudes of scotopic electroretinogram (ERG) and reduced b wave amplitudes of photopic ERG, respectively, reflecting damage to both the photoreceptors and secondary neuronal cells of the retina. Histologic analyses showed a progressive retinal thinning accompanied by the significantly loss of retinal cells including cone, rod, bipolar, horizontal and retinal ganglion cells. The expression levels of photo‐transduction‐related proteins were down‐regulated in KO retina. TUNEL (terminal deoxynucleotidyl transferase‐mediated biotinylated Uridine‐5'‐triphosphate [UTP] nick end labelling) and glial fibrillary acidic protein (GFAP)‐labelling results suggested the increased cell death and inflammation in the KO mice. RNA‐sequencing analysis and GO enrichment analysis revealed that Tmem184b deletion resulted in down‐regulated genes involved in various biological processes such as visual perception, response to hypoxia, regulation of transmembrane transporter activity. Taken together, our study revealed essential roles of Tmem184b in the mammalian retina and confirmed the underlying mechanisms including cell death, inflammation and hypoxia pathway in the absence of Tmem184b, providing a potential target for therapeutic and diagnostic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.