Six alkylthiophenes, 2-hexadecyl-5-methylthiophene (I), 2-methyl-5-tridecylthiophene (II) and 2-butyl-5-tridecylthiophene (III), 2-(3,7-dimethyloctyl)-5-methylthiophene (IV), 2-methyl-5-(3,7,11,15-tetramethylhexadecyl)thiophene (V) and 2-ethyl-5-(3,7,11,15-tetramethylhexadecyl)thiophene (VI) were synthesized and used as substrates in biodegradation studies. The products of their aerobic metabolism by pure bacterial cultures were identified. In most cases, the long alkyl chains of these thiophenes were preferentially attacked and in pure cultures of alkane-degrading bacteria, the major metabolites that accumulated in the medium were 5-methyl-2-thiopheneacetic acid from (I), 5-methyl-2-thiophenecarboxylic acid from (II) and occasionally from (V), 5-butyl-2-thiophenecarboxylic acid from (III) and 5-ethyl-2-thiopheneacetic acid from (VI). These transformations are consistent with the metabolism of the alkyl side chains via the beta-oxidation pathway. In contrast, 5-(3,7-dimethyloctyl)-2-thiophenecarboxylic acid was produced from (IV). Because it was available in greatest supply, (I) was studied most thoroughly. It supported growth of the six n-alkanedegrading bacteria tested and (I) was degraded more quickly than pristane but not as quickly as nhexadecane in mixtures of these three compounds. In the presence of Prudhoe Bay crude oil and a mixed culture of petroleum-degrading bacteria, the acid metabolites from (I), (II) and (III) underwent further biotransformations to products that were not detected by the analytical methods used. The addition of n-hexadecane to the mixed culture of petroleum-degrading bacteria also enhanced the further biotransformations of the metabolites from (I).