Abstract:The atherosclerosis, a chronic and inflammatory disease that occurs when there are high levels of low-density lipoprotein (LDL) on plasma. This important risk factor for development of cardiovascular disease (CVD) is the main cause of death worldwide. MicroRNAs have recently emerged as potential biomarkers and therapeutic target for lipid metabolism disorders. In this review, we will provide profile of surrounding miRNAs that have demonstrated being regulators of PCSK9, LDLR and APOB100 genes. Recent work has identified the mir-148, mir-128, mir-27a/b, mir-185, mir-301, mir-130 as important regulators of this pathway because they decrease supply of LDL receptors through interaction with PCSK9. Inhibition of LDLR expression cause elevation of plasma LDL levels which induces atherosclerosis. While mir-30c, mir-122, mir-34 decrease MTTP, which promotes degradation of APOB100 preventing assembly and secretion of VLDL. We conclude that, when overexpressed, mir-148a, mir128 and mir-27a/b, mir-122 and mir-34 are related to decrease in LDLR, facilitating occurrence of atherosclerosis. While mir-30 has been linked to decreased atherosclerosis. Detection of miRNAs profile could be used in the future as a biomarker for disturbs linked to c-LDL uptake and in future anti-miRNAs therapies may be used in the treatment of atherosclerosis.