Mitochondrial carriers are a family of proteins that transport metabolites, nucleotides, and cofactors across the inner mitochondrial membrane thereby connecting cytosolic and matrix functions. The essential cofactor coenzyme A (CoA) is synthesized outside the mitochondrial matrix and therefore must be transported into mitochondria where it is required for a number of fundamental processes. In this work we have functionally identified and characterized SLC25A42, a novel human member of the mitochondrial carrier family. The SLC25A42 gene (Haitina, T., Lindblom, J., Renström, T., and Fredriksson, R., 2006, Genomics 88, 779 -790) was overexpressed in Escherichia coli, purified, and reconstituted into phospholipid vesicles. Its transport properties, kinetic parameters, and targeting to mitochondria demonstrate that SLC25A42 protein is a mitochondrial transporter for CoA and adenosine 3,5-diphosphate. SLC25A42 catalyzed only a counter-exchange transport, exhibited a high transport affinity for CoA, dephospho-CoA, ADP, and adenosine 3,5-diphosphate, was saturable and inhibited by bongkrekic acid and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A42 is to import CoA into mitochondria in exchange for intramitochondrial (deoxy)adenine nucleotides and adenosine 3,5-diphosphate. This is the first time that a mitochondrial carrier for CoA and adenosine 3,5-diphosphate has been characterized biochemically.The mitochondrial carrier family, or the solute carrier family 25 (SLC25), 3 comprises a large group of proteins that transport a variety of substrates across the inner mitochondrial membrane and, in a few cases, across other membranes (1, 2). Common structural features of the mitochondrial carrier family members consist in a tripartite structure (three repeats of ϳ100 amino acids), the presence of two transmembrane ␣-helices separated by hydrophilic loops in each repeat, and the presence of a signature motif at the C terminus of the first helix in each repeat (Ref. 3 and references therein). The SLC25 family is by far the largest of the currently known 43 SLC families. The Saccharomyces cerevisiae genome contains 35 members, that of Arabidopsis thaliana 58, and the human genome at least 48 SLC25 members. Until now, nearly 30 members and isoforms of this family have been identified in humans. These include the uncoupling protein and the carriers for ADP/ATP, phosphate, 2-oxoglutarate/malate, citrate, carnitine/acylcarnitine, dicarboxylates, ornithine and other basic amino acids, oxodicarboxylates, deoxynucleotides and thiamine pyrophosphate, aspartate-glutamate, glutamate, S-adenosylmethionine, ATPMg/Pi, pyrimidine nucleotides, and adenine nucleotides in peroxisomes (see Ref. 1 for a review and Refs. 4 -8). The present investigation was undertaken to identify the function of SLC25A42, a novel member of the SLC25 family recently found in the human genome (9). SLC25A42 is 318 amino acids long and is highly expressed in virtually all tissues, in most at higher levels than ma...