Development of the expansive endoplasmic reticulum (ER) present in specialized secretory cell types requires X-box-binding protein-1 (Xbp-1). Enforced expression of XBP-1(S), a transcriptional activator generated by unfolded protein responsemediated splicing of Xbp-1 mRNA, is sufficient to induce proliferation of rough ER. We previously showed that XBP-1(S)-induced ER biogenesis in fibroblasts correlates with increased production of phosphatidylcholine (PtdCho), the primary phospholipid of the ER membrane, and enhanced activities of the choline cytidylyltransferase (CCT) and cholinephosphotransferase enzymes in the cytidine diphosphocholine (CDP-choline) pathway of PtdCho biosynthesis. Here, we report that the level and synthesis of CCT, the rate-limiting enzyme in the CDPcholine pathway, is elevated in fibroblasts overexpressing XBP-1(S). Furthermore, overexpression experiments demonstrated that raising the activity of CCT, but not cholinephosphotransferase, is sufficient to augment PtdCho biosynthesis in fibroblasts, indicating that XBP-1(S) increases the output of the CDP-choline pathway primarily via its effects on CCT. Finally, fibroblasts overexpressing CCT up-regulated PtdCho synthesis to a level similar to that in XBP-1(S)-transduced cells but exhibited only a small increase in rough ER and no induction of secretory pathway genes. The more robust XBP-1(S)-induced ER expansion was accompanied by induction of a wide array of genes encoding proteins that function either in the ER or at other steps in the secretory pathway. We propose that XBP-1(S) regulates ER abundance by coordinately increasing the supply of membrane phospholipids and ER proteins, the key ingredients for ER biogenesis.
The endoplasmic reticulum (ER)3 is a multifunctional organelle responsible for the folding and assembly of all proteins targeted to the secretory pathway (1). As such, the ER can adapt to accommodate an increased load of nascent polypeptides. For example, when B-lymphocytes differentiate into antibody-secreting plasma cells, an elaborate network of rough ER develops to facilitate immunoglobulin production (2-4). Likewise, the rough ER is highly developed in other specialized secretory cell types such as pancreatic acinar cells that secrete copious amounts of digestive enzymes (5). In contrast, the ER is sparse in non-secretory cells, such as reticulocytes (6). ER abundance, therefore, is regulated according to the demands on the secretory pathway. However, the mechanisms that regulate ER biogenesis are incompletely defined (7).A key regulator of ER homeostasis is the unfolded protein response (UPR) pathway, a complex signaling system emanating from the ER membrane (8). When the protein folding capacity of the ER is challenged, the UPR relieves the resulting stress by repressing translation, increasing expression of ER chaperones and folding enzymes, and enhancing ER-associated degradation (8). In addition, recent studies have uncovered a connection between the UPR and ER abundance (9, 10). The UPR-regulated transcription fa...