In a try to understand the pathogenesis, evolution, and epidemiology of the SARS-CoV-2 virus, scientists from all over the world are tracking its genomic changes in real-time. Genomic studies can be helpful in understanding the disease dynamics. We have downloaded 324 complete and near-complete SARS-CoV-2 genomes submitted in the GISAID database from Bangladesh which were isolated between 30 March to 7 September 2020. We then compared these genomes with the Wuhan reference sequence and found 4160 mutation events including 2253 missense single nucleotide variations, 38 deletions, and 10 insertions. The C>T nucleotide change was most prevalent possibly due to selective mutation pressure to reduce CpG sites to evade CpG targeted host immune response. The most frequent mutation that occurred in 98% of the isolates was 3037C>T which is a synonymous change that almost always accompanied 3 other mutations that include 241C>T, 14408C>T (P323L in RdRp), and 23403A>G (D614G in spike protein). The P323L was reported to increase mutation rate and D614G is associated with increased viral replication and currently the most prevalent variant circulating all over the world. We identified multiple missense mutations in B-cell and T-cell predicted epitope regions and/or PCR target regions (including R203K and G204R that occurred in 86% of the isolates) that may impact immunogenicity and/or RT-PCR based diagnosis. Our analysis revealed 5 large deletion events in ORF7a and ORF8 gene products that may be associated with less severity of the disease and increased viral clearance. Our phylogeny analysis identified most of the isolates belonged to the Nextstrain clade 20B (86%) and GISAID clade GR (88%). Most of our isolates shared common ancestors either directly with European countries or jointly with middle eastern countries as well as Australia and India. Interestingly, the 19B clade (GISAID S clade) was unique to Chittagong which was originally prevalent in China. This reveals possible multiple introductions of the virus in Bangladesh via different routes. Hence more genome sequencing and analysis with related clinical data are needed to interpret the functional significance and better predict the disease dynamics that may be helpful for policymakers to control the COVID-19 pandemic in Bangladesh.