Engineering structure degradation in the marine environment, especially the tidal zone and splash zone, is serious. The compressive strength of concrete exposed to the wet-dry cycle is investigated in this study. Several significant influencing factors of compressive strength of concrete in the wet-dry environment are selected. Then, the database of compressive strength influencing factors is established from vast literature after a statistical analysis of those data. Backpropagation artificial neural networks (BP-ANNs) are applied to establish a multifactorial model to predict the compressive strength of concrete in the wet-dry exposure environment. Furthermore, experiments are done to verify the generalization of the BP-ANN model. This model turns out to give a high accuracy and statistical analysis to confirm some rules in marine concrete mix and exposure. In general, this model is practical to predict the concrete mechanical performance.