2022
DOI: 10.1016/j.jairtraman.2022.102232
|View full text |Cite
|
Sign up to set email alerts
|

Identification of opinion trends using sentiment analysis of airlines passengers' reviews

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(4 citation statements)
references
References 31 publications
0
3
0
1
Order By: Relevance
“…In predicting airline fares, the typical factors, including season, travel day and month, weekend, holiday, booking class, class of service, and number of stops, are taken into consideration [6,9,18]. However, passenger sentiments on key services may also affect the ticket prices [37][38][39]. With ABSA, airlines can discern the specific service attributes that might determine travelers' decisions of expenditure [39,40].…”
Section: Aspect-based Sentiment Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…In predicting airline fares, the typical factors, including season, travel day and month, weekend, holiday, booking class, class of service, and number of stops, are taken into consideration [6,9,18]. However, passenger sentiments on key services may also affect the ticket prices [37][38][39]. With ABSA, airlines can discern the specific service attributes that might determine travelers' decisions of expenditure [39,40].…”
Section: Aspect-based Sentiment Analysismentioning
confidence: 99%
“…However, passenger sentiments on key services may also affect the ticket prices [37][38][39]. With ABSA, airlines can discern the specific service attributes that might determine travelers' decisions of expenditure [39,40]. By combining this knowledge with historical fare data, the prediction models may become more refined and can capture those aspects of passengers' experiences that influence fare choices.…”
Section: Aspect-based Sentiment Analysismentioning
confidence: 99%
“…The process offers a systematic and comprehensive approach to sentiment analysis in airline services. By utilizing sentiment analysis, airlines can gain valuable insights into customer preferences and needs (Farzadnia and Raeesi Vanani, 2022;Patel et al, 2023). They can also monitor service performance, assess customer satisfaction levels (Farzadnia and Raeesi Vanani, 2022), evaluate competitive positions by identifying strengths and weaknesses (Patel et al, 2023), and formulate effective strategies to enhance service quality and foster customer loyalty.…”
Section: Sentiment Insights and Decision-makingmentioning
confidence: 99%
“…Teknologi Big Data berkembang dalam pengelolaan data dengan jumlah yang sangat besar dan kompleks sehingga dapat membantu dalam mendapatkan berbagai wawasan, informasi, solusi; serta meningkatkan keunggulan kompetitif yang signifikan di sebagian besar organisasi, perusahaan, institusi, dan lain-lain [6]. Hasil penelitian sebelumnya terkait dengan pemanfaatan Big Data dalam meningkatkan kualitas maskapai penerbangan menunjukkan bahwa analisis sentimen pada ulasan penumpang maskapai dapat digunakan untuk mendapatkan informasi mengenai kekuatan dan kelemahan pelayanan maskapai kepada pelanggan sehingga maskapai tersebut dapat mengembangkan strategi baru dan meningkatkan pangsa pasar mereka [7]. Penelitian sebelumnya yang terkait dengan analisis sentimen berhasil menggunakan metode Multinomial Naïve Bayes untuk mengklasifikasi sentimen pada data review produk di situs Lazada dengan hasil nilai accuracy, precision, recall, dan f1-score sebesar 90% [8].…”
Section: Pendahuluanunclassified