The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment. Hypoxia, through its main mediator, hypoxia-inducible factor-1 (HIF-1) is also associated with the limited efficacy of immunotherapies. Therefore, designing new strategies for immunotherapy implicating therapeutic targeting of HIF-1 molecules may enhance the clinical effectiveness of immunotherapy. Here, we discuss the contribution of hypoxia to the development of the immunosuppressive tumor microenvironment. We will also outline different strategies for targeting hypoxia to provide insight into the therapeutic potential of the application of such strategies to improve the clinical benefit of cancer immunotherapy.