Background: Hepatocellular carcinoma (HCC) is a highly malignant disease with poor prognosis. It is urgent to find effective biomarkers. Eukaryotic Translation Initiation Factor 2 Subunit Beta (EIF2S2) is a subunit of heterotrimeric G protein EIF2, and its function is still unclear. We studied the role of EIF2S2 in the malignant progression of liver cancer and its relationship with immune infiltration.Methods: Download the RNA expression and clinical information of EIF2S2 from the Cancer Genome Atlas (TCGA) database, analyze the relationship between the expression of EIF2S2 and the prognosis and clinicopathological characteristics of HCC, analyze the differential genes by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and tumor related immune infiltrating cells. The Protein expression level of EIF2S2 was obtained from Human Protein Atlas (HPA) databases. The relationship between EIF2S2 expression and immune infiltrates in HCC was analyzed on TIMER 2.0. The data processing analysis based on R language. Drug Sensitivity data from Genomics of Drug Sensitivity in Cancer (GDSC).Results: EIF2S2 is highly expressed in HCC patients and is associated with poor prognosis. The expression of EIF2S2 was also correlated with age, clinical stage and pathological grade. Univariate and multivariate COX regression analysis showed that EIF2S2 was an independent risk factor for survival. The receiver operating characteristic (ROC) curve of EIF2S2 also confirmed the diagnostic value of EIF2S2 in HCC patients. Through GO and KEGG enrichment analysis, EIF2S2 expression was found to be closely related to some immune pathways. The expression of EIF2S2 was correlated with memory B cell, plasma B cell, CD8+ T cell, CD4+ resting memory T cell and the expression of some immune checkpoints, such as PDCD1, TIGIT and CTLA-4. It is also more sensitive to paclitaxel, sunitinib and other drugs.Conclusion: This study shows that EIF2S2 can be used as a prognostic factor for HCC, which is closely related to immune infiltration and immune checkpoints, and may play a potential regulatory role in predicting drug sensitivity.