Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yieldrelated markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.