The covalent coupling of fatty acids to proteins provides an important mechanism of regulation in cells. In eukaryotes, cysteine fatty acylation (S-fatty acylation) has been shown to be critical for protein function in a variety of cellular pathways as well as microbial pathogenesis. While methods developed over the past decade have improved the detection and profiling of S-fatty acylation, they are hampered in their ability to characterize endogenous protein S-fatty acylation levels under physiological conditions. Furthermore, understanding the contribution of specific sites and levels of S-fatty acylation remains a major challenge. To evaluate S-fatty acylation of endogenous proteins as well as determine the number of S-fatty acylation events, we developed the acyl-PEG exchange (APE) that utilizes cysteine-specific chemistry to exchange S-fatty acylation sites with mass-tags of defined size, which can be readily observed by western blot. APE provides a readily accessible approach to investigate endogenous S-fatty acylation from any sample source, with high sensitivity and broad applicability that compliments the current toolbox of methods for thioester-based post-translational modifications.