Microbial communities are known to play a principal role in petroleum degradation. This study tries to determine the composition of bacteria in selected crude oil-contaminated soil from Tabasco and Tamaulipas states, Mexico. We determined the microbial populations living under these conditions. We evaluated the structure and diversity of bacterial communities in the contaminated soil samples. The most abundant phylum is proteobacteria. Next Generation Sequencing (NGS) analysis of the sampled soils from both states revealed that this phylum has the most relative abundance among the identified bacteria phyla. The heatmap represented the relative percentage of each genus within each sample and clustered the four samples into two groups. Moreover, this allowed us to identify many genera in alkaline soil from Tamaulipas, such as Skermanella sp., Azospirillum sp. and Unclassified species from the Rhodospirillaceae family in higher abundance. Meanwhile, in acidic soil from Tabasco, we identified Thalassospira, Unclassified members of the Sphingomonadaceae family and Unclassified members of the Alphaproteobacteria class with higher abundance. Alpha diversity analysis showed a low diversity (Shannon and Simpson index); Chao observed species in both Regions. These results suggest that the bacteria identified in these genera may possess the ability to degrade petroleum, and further studies in the future should elucidate their role in petroleum degradation.