Abstract. The United Nations Food and Agriculture Organisation (FAO) forecasts a 34% increase in the world population by 2050. As a consequence, the productivity of important staple crops such as cereals needs to be boosted by an estimated 43%. This growth in cereal productivity will need to occur in a world with a changing climate, where more frequent weather extremes will impact on grain productivity. Improving cereal productivity will, therefore, not only be a matter of increasing yield potential of current germplasm, but also of improving yield stability through enhanced tolerance to abiotic stresses. Successful reproductive development in cereals is essential for grain productivity and environmental constraints (drought, cold, frost, heat and waterlogging) that are associated with climate change are likely to have severe effects on yield stability of cereal crops. Currently, genetic gains conferring improved abiotic stress tolerance in cereals is hampered by the lack of reliable screening methods, availability of suitable germplasm and poor knowledge about the physiological and molecular underpinnings of abiotic stress tolerance traits.