Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective: to form a model for predicting the default of credit organizations under the modern conditions of the banking sector functioning.Methods: unidimensional analysis of variance, regression analysis of binary choice models.Results: in the modern economy, the banking system stability largely affects not only the financial sector, but also the economic and investment climate in the country. Understanding of the banks’ influence on the economy necessitates the formation of appropriate effective forecasting systems that allow identifying problem banks before revoking their licenses is necessary. The existing methodology of the Bank of Russia is characterized by subjectivity and inaccuracy of assessment. The analysis of studies on predicting bank defaults showed various approaches to the methodology of assessing the probability of credit institutions’ bankruptcy, though they have a number of shortcomings. Based on the selection of key factors affecting the bank’s financial stability, the logistic regression model for predicting bankruptcy of banks was formed. The methodology proposed in this article includes five predictors, selected on the basis of the improved methodology for selecting logit regression variables, and complements the existing methodologies.Scientific novelty: a methodology for assessing the probability of commercial banks’ bankruptcy in the Russian Federation was developed, which includes five key predictors for assessing the bank’s financial stability: return on assets, unit weight of liquid assets in the balance sheet currency, unit weight of the loan portfolio in the balance sheet currency, share of loans to the real sector in the balance sheet currency, and share of long-term placements in the loan portfolio. The logistic regression model of binary choice proposed in the paper allows distinguishing financially stable credit organizations from problem banks with a forecasting horizon of five months and a classification accuracy of 88,33 %.Practical significance: the relatively high classification accuracy of the model allows its use by the Bank of Russia in controlling the credit organizations functioning, as well as directly by the credit organization’s management, in order to assess the organization’s financial stability and to predict the default probability, as well as to form the bank’s development strategy.
Objective: to form a model for predicting the default of credit organizations under the modern conditions of the banking sector functioning.Methods: unidimensional analysis of variance, regression analysis of binary choice models.Results: in the modern economy, the banking system stability largely affects not only the financial sector, but also the economic and investment climate in the country. Understanding of the banks’ influence on the economy necessitates the formation of appropriate effective forecasting systems that allow identifying problem banks before revoking their licenses is necessary. The existing methodology of the Bank of Russia is characterized by subjectivity and inaccuracy of assessment. The analysis of studies on predicting bank defaults showed various approaches to the methodology of assessing the probability of credit institutions’ bankruptcy, though they have a number of shortcomings. Based on the selection of key factors affecting the bank’s financial stability, the logistic regression model for predicting bankruptcy of banks was formed. The methodology proposed in this article includes five predictors, selected on the basis of the improved methodology for selecting logit regression variables, and complements the existing methodologies.Scientific novelty: a methodology for assessing the probability of commercial banks’ bankruptcy in the Russian Federation was developed, which includes five key predictors for assessing the bank’s financial stability: return on assets, unit weight of liquid assets in the balance sheet currency, unit weight of the loan portfolio in the balance sheet currency, share of loans to the real sector in the balance sheet currency, and share of long-term placements in the loan portfolio. The logistic regression model of binary choice proposed in the paper allows distinguishing financially stable credit organizations from problem banks with a forecasting horizon of five months and a classification accuracy of 88,33 %.Practical significance: the relatively high classification accuracy of the model allows its use by the Bank of Russia in controlling the credit organizations functioning, as well as directly by the credit organization’s management, in order to assess the organization’s financial stability and to predict the default probability, as well as to form the bank’s development strategy.
This paper is devoted to modeling the probability of default of Russian banks in 2015–2020. There are relatively few studies on defaults of Russian banks after 2015, and our work intends to partly fill this gap. The purpose of this research is to determine the main variables which significantly impact the risk of default of Russian banks. The work seeks to identify additional factors associated with an increased risk of bank defaults during a relatively stable period of development of the Russian economy (2015–2020) without external shocks, such as COVID‑19 or international sanctions. We apply an integrated approach to modeling the risk of bank defaults. Empirical methodology is represented by logit and probit models, as well as Cox regression. The set of potential predictors for bank defaults include the variables, characterizing various aspects of credit institutions functioning (in accordance with the CAMELS system), as well as macroeconomic variables. The most significant predictors of default turn out to be the capital adequacy ratio N1, bank net assets, the ratio of total loans to assets and the size of secured loan portfolio. In general, the results we obtain are consistent with the CAMELS system of indicators assessing the sustainability of commercial banks, while the impact of macroeconomic indicators tends to be insignificant. The results of the study could be of interest to the regulator both for the purposes of ongoing monitoring of financial stability as well as for default risk prevention; to credit institutions which elaborate internal systems for monitoring their financial soundness; and to financial market participants to select the most stable companies in terms of investment and allocation of funds. Further directions of research are related to the inclusion of a crisis period into the analysis and comparing the set of significant predictors for bank defaults during a crisis and a stable period of economic development, as well as the use of alternative methods, in particular, machine learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.