Identification of sparse nonlinear controlled variables for near‐optimal operation of chemical processes
Xie Ma,
Hongwei Guan,
Lingjian Ye
Abstract:For optimal operation of chemical processes, the selection of controlled variables plays an important role. A previous proposal is to approximate the necessary conditions of optimality (NCO) as the controlled variables, such that process optimality is automatically maintained by tracking constant zero setpoints. In this paper, we extend the NCO approximation method by identifying sparse nonlinear controlled variables, motivated by the fact that simplicity is always favoured for practical implementations. To th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.