Coke production is an important source of environmental polycyclic aromatic compounds (PACs), including parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives. The focus near coking plants has primarily been on parent-PAH contamination, with less attention given to highly toxic derivatives. In this study, soil samples were collected from both within and outside of a coking plant. The concentrations of parent-PAHs and their derivatives, including methylated-PAHs, oxygenated-PAHs, and nitrated-PAHs, were examined. Spatial interpolation was employed to determine their spatial distribution patterns. Methods for identifying potential sources and conducting incremental lifetime cancer risk analysis were used. This could achieve a comprehensive understanding of the status of PAC pollution and the associated health risks caused by coke production. The concentrations of total PACs inside the plant ranged from 7.4 to 115.8 mg/kg, higher than those outside (in the range of 0.2 to 65.7 mg/kg). The spatial distribution of parent-PAH concentration and their derivatives consistently decreased with increasing distance from the plant. A significant positive correlation (p < 0.05) among parent-PAHs and their derivatives was observed, indicating relatively consistent sources. Based on diagnostic ratios, the potential emission sources of soil PACs could be attributed to coal combustion and vehicle emissions, while principal component analysis–multiple linear regression further indicated that primary emissions and secondary formation jointly influenced the PAC content, accounting for 60.4% and 39.6%, respectively. The exposure risk of soil PACs was dominated by 16 priority control PAHs; the non-priority PAHs’ contribution to the exposure risk was only 6.4%.