2019
DOI: 10.13053/rcs-148-11-16
|View full text |Cite
|
Sign up to set email alerts
|

Identification of Static and Dynamic Signs of the Mexican Sign Language Alphabet for Smartphones using Deep Learning and Image Processing

Abstract: The Mexican Sign Language (MSL) is a language with its own syntax and lexicon. It is used by the deaf people, who use it to express thoughts, ideas and emotions. However, most of hearing people are unable to understand this language. The alphabet of any Sign Language (SL) is composed of signs where each sign corresponds to a letter of the alphabet of the dominant language in the region, for example, Spanish or English. Most signs of a signed alphabet are static, that means, they are only composed by the config… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 6 publications
0
2
0
2
Order By: Relevance
“…However, this sensor-based work has been limited to hand processing. Last decades, researchers were again focused on RGB cameras to collect the hand skeleton information of the hand gesture and hand signs [4,32,[47][48][49][50][51]. Many researchers have developed camera data-based hand gesture recognition using conventional machine learning algorithms.…”
Section: Related Workmentioning
confidence: 99%
“…However, this sensor-based work has been limited to hand processing. Last decades, researchers were again focused on RGB cameras to collect the hand skeleton information of the hand gesture and hand signs [4,32,[47][48][49][50][51]. Many researchers have developed camera data-based hand gesture recognition using conventional machine learning algorithms.…”
Section: Related Workmentioning
confidence: 99%
“…Parallel to these developments, Martínez-Gutiérrez et al [16] and Martinez-Seis et al [17] focused on MSL alphabet recognition through advanced computational methods, each achieving notable accuracy in their respective areas.…”
Section: Related Workmentioning
confidence: 99%
“…reconocimiento de señas mediante aprendizaje profundo (Rao et al, 2018;Xia et al, 2022;Kothadiya et al, 2022); sin embargo, hay poca investigación específica de la LSM y la mayoría se ha centrado en el recono-cimiento estático de la LSM (Solís-V et al, 2014;Solís et al, 2015Carmona-Arroyo et al, 2021;Rios-Figueroa et al, 2022). En el reconocimiento de señas estáticas y dinámicas de la LSM se encuentra (Martinez-Seis et al, 2019). Adicionalmente, existe reconocimiento de vocabulario de la LSM usando Leap Motion Controller (Nájera et al, 2016) y desarrollo de traductores de habla a señas (español a LSM) usando sensores RGBD (Trujillo-Romero y Caballero-Morales, 2012; Caballero-Morales y Trujillo-Romero, 2013) y de señas a habla (LSM a español) (Garcia-Bautista et al, 2016).…”
Section: Reconocimiento De La Lsmunclassified
“…Este enfoque permitiría identificar y delimitar las regiones de interés. Otra perspectiva prometedora es el seguimiento de la trayectoria de las manos mediante algoritmos, tales como el algoritmo de Camshift, (Bradski, 1998), cuya eficacia ha sido probada en investigaciones previas (Martinez-Seis et al, 2019). La aplicación de dicha técnica podría proporcionar información valiosa acerca de la evolución y el desplazamiento de los objetos de interés a lo largo de la escena.…”
Section: Consideraciones Técnicas Para La Base De Datos Visualunclassified