Salinity is one of the most significant abiotic stress that affects the growth and development of high-value tree species, including sandalwood, which can also be managed effectively on saline soils with the help of suitable host species. Therefore, the current investigation was conducted to understand the physiological processes and antioxidant mechanisms in sandalwood along the different salinity gradients to explore the host species that could support sandalwood growth in salt-affected agro-ecosystems. Sandalwood seedlings were grown with ten diverse host species with saline water irrigation gradients (ECiw~3, 6, and 9 dS m−1) and control (ECiw~0.82 dS m−1). Experimental findings indicate a decline in the chlorophyll content (13–33%), relative water content (3–23%), photosynthetic (27–61%) and transpiration rate (23–66%), water and osmotic potential (up to 137%), and ion dynamics (up to 61%) with increasing salinity levels. Conversely, the carotenoid content (23–43%), antioxidant activity (up to 285%), and membrane injury (82–205%) were enhanced with increasing salinity stress. Specifically, among the hosts, Dalbergia sissoo and Melia dubia showed a minimum reduction in chlorophyll content, relative water content, and plant water relation and gas exchange parameters of sandalwood plants. Surprisingly, most of the host tree species maintained K+/Na+ of sandalwood up to moderate water salinity of ECiw~6 dS m−1; however, a further increase in water salinity decreased the K+/Na+ ratio of sandalwood by many-fold. Salinity stress also enhanced the antioxidative enzyme activity, although the maximum increase was noted with host plants M. dubia, followed by D. sissoo and Azadirachta indica. Overall, the investigation concluded that sandalwood with the host D. sissoo can be successfully grown in nurseries using saline irrigation water and, with the host M. dubia, it can be grown using good quality irrigation water.