Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. The evolution of galaxy groups and the brightest group galaxies (BGGs) is influenced by their location in the cosmic web. Aims. Our aim is to combine data on galaxy groups, their BGGs, and their location in the cosmic web, to determine classes of groups and clusters, and to obtain a better understanding of their properties and evolution. Methods. Data on groups and their BGGs are based on the Sloan Digital Sky Survey DR10 MAIN spectroscopic galaxy sample in the redshift range 0.009 ≤ z ≤ 0.200. We characterize the group environments by the luminosity–density field and their filament membership. We divide BGGs according to their star formation properties as quenched (Q), red star-forming galaxies (RSF), and blue star-forming galaxies (BSF). We apply multidimensional Gaussian mixture modelling to divide groups based on the properties of the groups, their BGGs, and their environments. We analyse the offset of BGGs with respect to the group centre, and the relation between the stellar velocity dispersion of BGGs σ⋆ and the group velocity dispersions σv. For comparison we also analyse the properties of single galaxies of different star formation properties in various environments. Results. The galaxy groups in our sample can be divided into two main classes: high-luminosity rich groups and clusters, and low-luminosity poor groups with threshold luminosity Lgrthr = 15 × 1010 h−2 L⊙ and total mass Mgrthr ≈ 23 × 1012 h−1 M⊙. The brightest galaxies in clusters and groups have different star formation properties. In rich groups and clusters ≈90% of the BGGs are red quenched galaxies, while in poor groups only ≈40 − 60% of BGGs are red and quenched, and the rest of the BGGs are star-forming, either blue (20 − 40% of BGGs) or red (∼17% of BCGs). Rich groups and clusters are located in global high-density regions (superclusters) in filaments or filament outskirts, while poor groups reside everywhere in the cosmic web regardless of the global density (superclusters or voids). Clusters with quenched BGGs have higher luminosities and their BGGs are closer to the cluster centre than in clusters with star-forming BGGs. Groups of the same richness with red (quenched and star-forming) BGGs are more luminous, and they lie in higher global density environment than groups with blue star-forming BGGs. Conclusions. Our results suggest that the evolution of groups and clusters and their BGGs is related to their location in the cosmic web. We emphasize the role of global high-density regions–superclusters as a special environment for group growth. The processes that shape the properties of groups and their BGG are different and/or have different timescales in groups and clusters.
Context. The evolution of galaxy groups and the brightest group galaxies (BGGs) is influenced by their location in the cosmic web. Aims. Our aim is to combine data on galaxy groups, their BGGs, and their location in the cosmic web, to determine classes of groups and clusters, and to obtain a better understanding of their properties and evolution. Methods. Data on groups and their BGGs are based on the Sloan Digital Sky Survey DR10 MAIN spectroscopic galaxy sample in the redshift range 0.009 ≤ z ≤ 0.200. We characterize the group environments by the luminosity–density field and their filament membership. We divide BGGs according to their star formation properties as quenched (Q), red star-forming galaxies (RSF), and blue star-forming galaxies (BSF). We apply multidimensional Gaussian mixture modelling to divide groups based on the properties of the groups, their BGGs, and their environments. We analyse the offset of BGGs with respect to the group centre, and the relation between the stellar velocity dispersion of BGGs σ⋆ and the group velocity dispersions σv. For comparison we also analyse the properties of single galaxies of different star formation properties in various environments. Results. The galaxy groups in our sample can be divided into two main classes: high-luminosity rich groups and clusters, and low-luminosity poor groups with threshold luminosity Lgrthr = 15 × 1010 h−2 L⊙ and total mass Mgrthr ≈ 23 × 1012 h−1 M⊙. The brightest galaxies in clusters and groups have different star formation properties. In rich groups and clusters ≈90% of the BGGs are red quenched galaxies, while in poor groups only ≈40 − 60% of BGGs are red and quenched, and the rest of the BGGs are star-forming, either blue (20 − 40% of BGGs) or red (∼17% of BCGs). Rich groups and clusters are located in global high-density regions (superclusters) in filaments or filament outskirts, while poor groups reside everywhere in the cosmic web regardless of the global density (superclusters or voids). Clusters with quenched BGGs have higher luminosities and their BGGs are closer to the cluster centre than in clusters with star-forming BGGs. Groups of the same richness with red (quenched and star-forming) BGGs are more luminous, and they lie in higher global density environment than groups with blue star-forming BGGs. Conclusions. Our results suggest that the evolution of groups and clusters and their BGGs is related to their location in the cosmic web. We emphasize the role of global high-density regions–superclusters as a special environment for group growth. The processes that shape the properties of groups and their BGG are different and/or have different timescales in groups and clusters.
Superclusters of galaxies mark the large-scale overdense regions in the Universe. Superclusters provide an ideal environment to study structure formation and to search for the emission of the intergalactic medium such as cosmic filaments and WHIM. In this work, we present the largest-to-date catalog of X-ray-selected superclusters identified in the first SRG/eROSITA All-Sky Survey (eRASS1). By applying the Friends-of-Friends (FoF) method on the galaxy clusters detected in eRASS1, we identified 1338 supercluster systems in the western Galactic hemisphere up to redshift 0.8, including 818 cluster pairs and 520 rich superclusters with ≥3 members. The most massive and richest supercluster system is the Shapley supercluster at redshift 0.05 with 45 members and a total mass of 2.58 ± 0.51 × 1016M⊙. The most extensive system has a projected length of 127 Mpc. The sizes of the superclusters we identified in this work are comparable to the structures found with galaxy survey data. We also found a good association between the eRASS1 superclusters and the large-scale structures formed by optical galaxies. We note that 3948 clusters, corresponding to 45% of the cluster sample, were identified as supercluster members. The reliability of each supercluster was estimated by considering the uncertainties in the redshifts of the galaxy clusters and the peculiar velocities of clusters. Furthermore, 63% of the systems have a reliability larger than 0.7. The eRASS1 supercluster catalog provided in this work represents the most extensive sample of superclusters selected in the X-ray band in terms of the unprecedented sample volume, sky coverage, redshift range, the availability of X-ray properties, and the well-understood selection function of the parent cluster sample, which enables direct comparisons with numerical simulations. This legacy catalog will greatly advance our understanding of superclusters and the cosmic large-scale structure.
We investigated the prevalence of giant radio galaxies (GRGs), some of the largest structures powered by supermassive black holes, within supercluster environments, and the influence of such environments on their properties. Utilising two large catalogues of superclusters (401) and GRGs (1446), we established the existence of 77 GRGs (5.3%) residing in 64 superclusters (16%) within 0.05 ≤ z ≤ 0.42. Among the 77 GRGs found in superclusters, we identified ∼70% as residing within galaxy clusters. Within the subset of GRGs not located in superclusters, which constitutes 94.7% of the sample, a mere 21% are associated with galaxy clusters, while the remaining majority are situated in sparser environments. We examined the influence of differing environments, such as cluster versus non-cluster and supercluster versus non-supercluster regions, on the size of GRGs, while also exploring the driving factors behind their overall growth. Our findings show that the largest GRGs (≳3 Mpc) grow in underdense environments beyond the confines of dense environments. Moreover, we show that ∼24% of 1446 GRGs reside in galaxy clusters. We conclude that GRGs preferentially grow in sparser regions of the cosmic web and have a significantly larger median size. Finally, we demonstrate the potential of GRGs as astrophysical probes with specific cases where GRGs, exhibiting polarised emissions and located behind superclusters (acting as natural Faraday screens), were used to estimate magnetic field strengths of the supercluster environment at sub-microgauss levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.