Over the past 25 years of studying type 2 diabetes mellitus, a working hypothesis has emerged to move the development of precision medicine for type 2 diabetes mellitus forward. Earlier studies using amplified genomic DNAs for genomic-wide searches of human genes have led many investigators astray. However, a recent study has taken a different approach, using next-generation RNA sequencing, revealing an essential down-regulation of two genes, TPD52L3 and NKX2-1. The current compendium focuses on describing all of the important priciples to clarify the hypothesis from the beginning: insulin sensitivity and glucose effectiveness, genetics, free fatty acids, cell membranes, atomistic glucose and glucose transport, β-cell functions, membrane flexibility and (pre-) diabetes type 2.Furthermore, this study sheds light on the importance of considering membrane flexibility in the context of type 2 diabetes and questions the potential risk associated with using the term 'insulin resistance'.