Vesicular trafficking plays an important role in a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica as secreted and lysosomal cysteine protease (CP) contributes to both cytolysis of tissues and degradation of internalized host cells. Despite the primary importance of intracellular sorting in pathogenesis, the molecular mechanism of CP trafficking remains largely unknown. In this report we demonstrate that transport of CP is regulated through a specific interaction of Rab7A small GTPase (EhRab7A) with the retromerlike complex. The amoebic retromerlike complex composed of Vps26, Vps29, and Vps35 was identified as EhRab7A-binding proteins. The amoebic retromerlike complex specifically bound to GTP-EhRab7A, but not GDP-EhRab7A through the direct binding via the carboxy terminus of EhVps26. In erythrophagocytosis the retromerlike complex was recruited to prephagosomal vacuoles, the unique preparatory vacuole of digestive enzymes, and later to phagosomes. This dynamism was indistinguishable from that of EhRab7A, and consistent with the premise that the retromerlike complex is involved in the retrograde transport of putative hydrolase receptor(s) from preparatory vacuoles and phagosomes to the Golgi apparatus. EhRab7A overexpression caused enlargement of lysosomes and decrease of the cellular CP activity. The reduced CP activity was restored by the coexpression of EhVps26, implying that the EhRab7A-mediated transport of CP to phagosomes is regulated by the retromerlike complex.
INTRODUCTIONRab GTPases play an essential role to regulate intracellular membrane trafficking. The compartmentalization and functions of Rab proteins are modulated at multiple layers of mechanisms including isoprenylation of the carboxy terminus, nucleotide exchange, and binding of specific effector molecules (Stenmark and Olkkonen, 2001;Takai et al., 2001;Tuvim et al., 2001). Among these modulators, effectors play key roles in the control of 7-90 Rab proteins depending on organisms from fission yeast and amoeba to mammals and plants. A variety of effectors have been identified and shown to interact with specific Rab protein. For instance, regulatory secretions of neurotransmitters from neurons or insulin from pancreatic -cells are regulated by the specific interaction of Rab3 with its effectors (Jahn and Sudhof, 1999). At least four proteins, Rabphilin3, Rim1, Rim2, and Noc2, are known to bind Rab3 and recruit cAMP-GEFII, 14 -3-3, and zyxin, respectively, to regulate cAMP responsiveness, phosphoserine-dependent signaling, and the interaction with cytoskeleton (Kotake et al., 1997;Ozaki et al., 2000;Sun et al., 2003). The specificity of the Rab-effector interaction is attributable to primary sequence motifs in only a few cases including exophilins or Slip/Slac2, Rab3, and Rab27 effectors (Izumi et al., 2003). However, the majority of Rab effectors lack recognizable conserved binding motifs. For instance, Rab5 effectors, rabaptin-5, Rabex-5, EEA1, Rabenosyn-5, hVps34/p150, p110/p35␣, rabip4Ј, and rabankyrin-5, which a...