Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/ D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/ F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.Leptin, a 16-kDa protein, is a central regulator of body weight (1), as well as a pleiotropic hormone whose involvement in many physiological processes has been well established (2). The three-dimensional structure of leptin was elucidated shortly after its discovery (3), but so far no structural information on its complex with leptin receptor has been published. Although several theoretical models of such a complex have been proposed (4 -6), lack of a valid crystallographic structure hampers reliable structural interpretation of any new leptin mutations. In the last decade, leptin has also been documented as a major regulator of the innate and adaptive immune response and a modulator of the onset and progression of autoimmunity in several animal models of disease (7), including rheumatoid arthritis, experimental autoimmune encephalomyelitis (4), and immune-mediated colitis (8). Work published from our and others' laboratories has also shown that leptin enhances thioacetamide-induced liver fibrosis (9) and liver inflammation in several mouse models (10). In addition, leptin acts as a mitogenic agent in many tissues and is suggested to promote cancer cell growth. In fact...