In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branchedchain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and that A. pleuropneumoniae mutants unable to synthesize BCAA would be attenuated in a porcine infection model. Quantitation of free amino acids in porcine pulmonary epithelial lining fluid showed concentrations of BCAA ranging from 8 to 30 mol/liter, which is 10 to 17% of the concentration in plasma. The expression of both ilvI and lrp, a global regulator that is required for ilvI expression, was strongly upregulated in CDM containing concentrations of BCAA similar to those found in pulmonary secretions. Deletion-disruption mutants of ilvI and lrp were both auxotrophic for BCAA in CDM and attenuated compared to wild-type A. pleuropneumoniae in competitive index experiments in a pig infection model. Wild-type A. pleuropneumoniae grew in CDM؉BCAA but not in CDM؊BCAA in the presence of sulfonylurea AHAS inhibitors. These results clearly demonstrate that BCAA availability is limited in the lungs and support the hypothesis that A. pleuropneumoniae, and potentially other pulmonary pathogens, uses limitation of BCAA as a cue to regulate the expression of genes required for survival and virulence. These results further suggest a potential role for AHAS inhibitors as antimicrobial agents against pulmonary pathogens.Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a disease of significant economic importance throughout the swine-raising areas of the world (6, 48). This pathogen possesses several well-studied virulence factors, including Apx toxins (20), capsular polysaccharides (57, 58), lipopolysaccharide (1, 17, 41), fimbriae (63), and ironscavenging proteins (13, 50), which aid in the pathogenesis of acute pleuropneumonia marked by edema, hemorrhage, and necrosis (6, 26). In a search for additional virulence factors of this pathogen, we developed an in vivo expression technology (IVET) system and used this genetic tool to identify A. pleuropneumoniae gene promoters that are upregulated in vivo in the swine lung during infection compared to growth on laboratory media (22, 55).One of the A. pleuropneumoniae in vivo-induced (ivi) promoters that we identified drives the ilvIH operon, which encodes both large and small subunits of acetohydroxy acid synthase isozyme III (AHAS) (55). AHAS enzymes catalyze pivotal steps in the biosynthesis of the branched-chain amino acids (BCAA) isoleucine, leucine, and valine (31). In a survey of IVET, signature-tagged mutagenesis, and microarray studies of other pathogens, we observed that genes involved in BCAA biosynthesis were frequently identified in studies of pathogen...