Identification of the Optimal Neural Network Architecture for Prediction of Bitcoin Return
Tea Šestanović,
Tea Kalinić Milićević
Abstract:Neural networks (NNs) are well established and widely used in time series forecasting due to their frequent dominance over other linear and nonlinear models. Thus, this paper does not question their appropriateness in forecasting cryptocurrency prices; rather, it compares the most commonly used NNs, i.e. feedforward neural networks (FFNNs), long short-term memory (LSTM) and convolutional neural networks (CNNs). This paper contributes to the existing literature by defining the appropriate NN structure comparabl… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.