Decays of tyrosine fluorescence in protein-ligand complexes are described by a model of continuous distribution of fluorescence lifetimes. Resulted analytical power-like decay function provides good fits to highly complex fluorescence kinetics. Moreover, this is a manifestation of so-called Tsallis q-exponential function, which is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay functions were applied to analysis of fluorescence decays of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli (the product of the deoD gene), free in aqueous solution and in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate). The power-like function provides new information about enzyme-ligand complex formation based on the physically justified heterogeneity parameter directly related to the lifetime distribution. A measure of the heterogeneity parameter in the enzyme systems is provided by a variance of fluorescence lifetime distribution. The possible number of deactivation channels and excited state mean lifetime can be easily derived without a priori knowledge of the complexity of studied system. Moreover, proposed model is simpler then traditional multi-exponential one, and better describes heterogeneous nature of studied systems. , © 2005 SPIE-OSA · 1605-7422/05/$15 SPIE-OSA/ Vol. 5862 58620X-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx SPIE-OSA/ Vol. 5862 58620X-2 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx SPIE-OSA/ Vol. 5862 58620X-3 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx