This work considers the estimation of internal volumetric heat generation, as well as the heat capacity of a solid spherical sample, heated by a homogeneous, time-varying electromagnetic field. To that end, the numerical strategy solves the corresponding inverse problem. Three functional forms (linear, sinusoidal, and exponential) for the electromagnetic field were considered. White Gaussian noise was incorporated into the theoretical temperature profile (i.e. the solution of the direct problem) to simulate a more realistic situation. Temperature was pretended to be read through four sensors. The inverse problem was solved through three different kinds of approach: using a traditional optimizer, using modern techniques, and using a mixture of both. In the first case, we used a traditional, deterministic Levenberg-Marquardt (LM) algorithm. In the second one, we considered three stochastic algorithms: Spiral Optimization Algorithm (SOA), Vortex Search (VS), and Weighted Attraction Method (WAM). In the final case, we proposed a hybrid between LM and the metaheuristics algorithms. Results show that LM converges to the expected solutions only if the initial conditions (IC) are within a limited range. Oppositely, metaheuristics converge in a wide range of IC but exhibit low accuracy. The hybrid approaches converge and improve the accuracy obtained with the metaheuristics. The difference between expected and obtained values, as well as the RMS errors, are reported and compared for all three methods.