Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Enterobacter asburiae, member of the Enterobacter cloacae complex (ECC) group, shows an increasing clinical relevance being responsible for infections like pneumonia, urinary tract infections and septicemia. The aim of the present study was the investigation of the genomic features of two XDR E. asburiae ST229 clinical strains co-carrying blaNDM-1 and blaVIM-1 determinants, collected in October 2021 and in June 2022, respectively. Two E. asburiae strains were collected from rectal swabs of as many patients admitted to the cardiopulmonary intensive care unit of Fondazione I.R.C.C.S. “Policlinico San Matteo” in Pavia, Italy. Based on the antibiotic susceptibility profile results, both isolates showed an XDR phenotype, retaining susceptibility only to fluoroquinolones. Both isolates shared identical resistome, virulome, plasmid content, and belonged to ST229, a rarely reported sequence type. They co-harbored blaNDM-1 and blaVIM-1 genes, that resulted located on transferable plasmids by conjugation and transformation. Moreover, both strains differed in 24 SNPs and showed genetic relatedness with E. asburiae ST709 and ST27. We described the first case of ST229 E. asburiae co-harboring blaNDM-1 and blaVIM-1 in Italy. This study points out the emergence of carbapenemases in low-risk pathogens, representing a novel challenge for public health, that should include such types of strains in dedicated surveillance programs. Antimicrobial susceptibility testing was carried out using Thermo Scientific™ Sensititre™ Gram Negative MIC Plates DKMGN. Both strains underwent whole-genome sequencing (WGS) using Illumina Miseq platform. Resistome, plasmidome, virulome, MLST, plasmid MLST and a SNPs-based phylogenetic tree were in silico determined.
Enterobacter asburiae, member of the Enterobacter cloacae complex (ECC) group, shows an increasing clinical relevance being responsible for infections like pneumonia, urinary tract infections and septicemia. The aim of the present study was the investigation of the genomic features of two XDR E. asburiae ST229 clinical strains co-carrying blaNDM-1 and blaVIM-1 determinants, collected in October 2021 and in June 2022, respectively. Two E. asburiae strains were collected from rectal swabs of as many patients admitted to the cardiopulmonary intensive care unit of Fondazione I.R.C.C.S. “Policlinico San Matteo” in Pavia, Italy. Based on the antibiotic susceptibility profile results, both isolates showed an XDR phenotype, retaining susceptibility only to fluoroquinolones. Both isolates shared identical resistome, virulome, plasmid content, and belonged to ST229, a rarely reported sequence type. They co-harbored blaNDM-1 and blaVIM-1 genes, that resulted located on transferable plasmids by conjugation and transformation. Moreover, both strains differed in 24 SNPs and showed genetic relatedness with E. asburiae ST709 and ST27. We described the first case of ST229 E. asburiae co-harboring blaNDM-1 and blaVIM-1 in Italy. This study points out the emergence of carbapenemases in low-risk pathogens, representing a novel challenge for public health, that should include such types of strains in dedicated surveillance programs. Antimicrobial susceptibility testing was carried out using Thermo Scientific™ Sensititre™ Gram Negative MIC Plates DKMGN. Both strains underwent whole-genome sequencing (WGS) using Illumina Miseq platform. Resistome, plasmidome, virulome, MLST, plasmid MLST and a SNPs-based phylogenetic tree were in silico determined.
The emergence of Enterobacteriaceae strains resistant to both colistin and carbapenem, which harbor the mobile colistin resistance (mcr) gene, has become a significant clinical and public health concern. The aim of this study was to identify strains with co-resistance to carbapenem and colistin and gain further understanding of the antimicrobial characteristics of these strains in South Korea. Bacterial identification was performed using MALDI Biotyper and Vitek2 compact, antibiotic susceptibility was tested using broth microdilution and agar disk diffusion, and the antimicrobial resistance genes were detected using polymerase chain reaction. Pulsed-field gel electrophoresis (PFGE) was used to compare and identify strains with co-resistance to carbapenem and colistin. In this study, a total of 66 (9.9%) clinical isolates of Enterobacteriaceae were obtained, all of which exhibited concurrent resistance to both carbapenem and colistin. Among these isolates, seven carried the mcr-8 (n=1), mcr-9 (n=5), and mcr-10 (n=1) genes, respectively. Notably, five clinical isolates with an identical pulsotype of Enterobacter cloacae complex were obtained from patients at the same hospital, while 11 isolates of Klebsiella pneumoniae were obtained from patients at the same or different hospitals in Gangwon Province, South Korea. Fortunately, none of the Klebsiella pneumoniae isolates that were transmitted carried the mcr gene. To the best of our knowledge, this is the confirmation of the transmission and circulation of carbapenem-and colistin-resistant Enterobacteriaceae strains in a nosocomial and/or local community setting in South Korea. These results underscore the importance of implementing effective infection control measures and continuously monitoring resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.