2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA) 2017
DOI: 10.1109/iccubea.2017.8463908
|View full text |Cite
|
Sign up to set email alerts
|

Identification of Toxic Gases using Electronic Nose

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 3 publications
0
2
0
1
Order By: Relevance
“…In the study [11], the outdoor air quality performance of three Electronic Nose systems utilizing only semiconducting gas sensors, only amperometric gas sensors, or both types of sensors are examined. Three semiconducting gas sensors and three amperometric gas sensors were ultimately employed to detect nitrogen dioxide, Sulphur dioxide, Ozone, and carbon monoxide.…”
Section: Related Workmentioning
confidence: 99%
“…In the study [11], the outdoor air quality performance of three Electronic Nose systems utilizing only semiconducting gas sensors, only amperometric gas sensors, or both types of sensors are examined. Three semiconducting gas sensors and three amperometric gas sensors were ultimately employed to detect nitrogen dioxide, Sulphur dioxide, Ozone, and carbon monoxide.…”
Section: Related Workmentioning
confidence: 99%
“…Sensor dengan seri MQ ini digunakan karena sensor jenis ini hemat biaya dan mudah tersedia di pasaran. Sensor MQ-135 membutuhkan waktu pemanasan lebih sedikit, memberikan respon cepat dan sensitivitasnya baik [7].Prinsip kerja dari sensor ini adalah ketika timah dioksida (partikel semikonduktor) dipanaskan di udara pada suhu tinggi, oksigen diserap di permukaan. Di udara bersih, elektron donor dalam timah dioksida tertarik ke arah oksigen yang diserap pada permukaan bahan sensor.…”
Section: Sensor Gas Mq-135unclassified
“…ANN, BP, PCA, SVM, LDA, and other sorts of algorithms can be utilised for classification. [6] Using Visual Basic 6.0, the backpropagation algorithm is produced. The outcomes are presented as percentages.…”
mentioning
confidence: 99%