White blood cells (WBCs) must be evaluated to determine how well the human immune system performs. Abnormal WBC counts may indicate malignancy, tuberculosis, severe anemia, cancer, and other serious diseases. To get an early diagnosis and to check if WBCs are abnormal or normal, one needs to examine the numbers and determine the shape of the WBCs. To address this problem, computer-aided procedures have been developed because hematologists perform this laborious, expensive, and time-consuming process manually. Resultantly, a powerful deep learning model was developed in the present study to categorize WBCs, including immature WBCs, from the images of peripheral blood smears. A network based on W-Net, a CNN-based method for WBC classification, was developed to execute the segmentation of leukocytes. Thereafter, significant feature maps were retrieved using a deep learning framework built on GhostNet. Then, they were categorized using a ResNeXt with a Wildebeest Herd Optimization (WHO)-based method. In addition, Deep Convolutional Generative Adversarial Network (DCGAN)-based data augmentation was implemented to handle the imbalanced data issue. To validate the model performance, the proposed technique was compared with the existing techniques and achieved 99.16%, 99.24%, and 98.61% accuracy levels for Leukocyte Images for Segmentation and Classification (LISC), Blood Cell Count and Detection (BCCD), and the single-cell morphological dataset, respectively. Thus, we can conclude that the proposed approach is valuable and adaptable for blood cell microscopic analysis in clinical settings.