2020
DOI: 10.5829/ije.2020.33.02b.12
|View full text |Cite
|
Sign up to set email alerts
|

Identification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm

Abstract: In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of identification, so a particle swarm optimization (PSO) algorithm is employed to determine the optimal values by which a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?