The process of recrystallization affecting dolomitic successions remains a longstanding enigma in carbonate research. Recrystallization influences the accuracy of genetic dolomitization models as well as the prediction of porosity and permeability distribution within dolomitic reservoirs. We investigate early-formed dolomites of the Upper Jurassic Arab Formation reservoir (Arabian Platform, United Arab Emirates), where recrystallization is not easily ascertained based on petrographic and O-C-Sr isotope analyses. Conversely, the application of Δ47/U-Pb thermochronometry revealed the occurrence of burial recrystallization over a temperature-time interval of ~45 °C/45 m.y. during the Early and Late Cretaceous. The process was initially driven by Late Jurassic mixed marine-meteoric fluids, which evolved during burial in a closed hydrologic system and remained in thermal equilibrium with the host rocks. Recrystallization was a stepwise process affecting the succession heterogeneously, so that samples only few meters apart presently record different temperature-time stages of the process that stopped when hydrocarbons migrated into the reservoir. Our results illustrate how Δ47/U-Pb thermochronometry may provide a novel approach to unravel dolomite recrystallization and to precisely determine the timing and physicochemical conditions (temperature and δ18Ow) that characterized the process. Therefore, this study paves the way for better appraisal of recrystallization in dolomitic reservoirs.